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EQUIVALENCE OF TOPOLOGICAL 
MARKOV SHIFTS 

BY 

R O Y  L. A D L E R ,  L. W A Y N E  G O O D W Y N  
A N D  B E N J A M I N  WEISS 

ABSTRACT 

We show that any two topological Markov shifts both of whose topological 
entropy equals log n (for some n) are equivalent  by a finitistic coding. 

1. Introduction 

How are two dynamical systems with the same topological entropy related? 

Can a theory be developed for topological entropy analogous to that of 

Ornstein's for Bernoulli shifts? Examples abound of systems having equal 

entropy but different number of fixed points. Therefore topological conjugacy is 

too strong an equivalence to yield anything interesting. We shall establish a 

weaker type of relation for the class of topological Markov shifts (shifts of finite 

type). We first deal with the aperiodic case and a restriction on the value of the 

topological entropy. Removal of these restrictions will be left to subsequent 

work. 

The present notion of equivalence involves the construction of continuous 

maps which are not invertible in the topological sense. However, they are in the 

measurable sense and consequently provide measure theoretic isomorphisms 

between Markov shifts with the same maximal measure entropy. This type of 

isomorphism has a special property which might be described as ]initistic coding, 
which means loosely speaking that a component of a sequence in the range of the 

isomorphism is determined by a finite, though not necessarily uniformly finite, 

number of components of the preimage. An example of this appeared in [1] but 

the idea was not developed there. A precise definition along with a brief 

discussion was presented in [2]. 

The authors wish to express their gratitude to Wm. Parry, the University of 
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Warwick ,  and the British Science Resea rch  Council  for  the oppor tun i ty  of  

a t tending  the 1975 s y m p o s i u m  on ergodic theory  during which some  ideas of  this 

p a p e r  crystallized, especially in discussions with Wm.  Parry.  

2. Preliminaries 

Cons ide r  a set 6e = {1,. �9 N} of N symbols  and an N x N matr ix  T = (tij) of  

zeros  and ones.  An n- tuple ,  some t imes  called an n-b lock ,  (~1,- �9 -, s~,) of symbols  

sci E .9~ i = 1,. �9 n, is said to be  T-admissible if t~,.,,+, = 1, i = 1, 2, .  �9 n - 1. 

Lef t  infinite sequences  (- .  �9 sr sr right infinite sequences  (~:o, ~:,, �9 �9 �9 ) and two 

sided infinite sequences  (. �9 �9 ~:_1, s sr �9 �9 �9 ) of  symbols  f rom 6e are likewise called 

T-admissible if te.e.+, = 1 for  n <- - 2, n _-> 0, and n E Z respect ively.  Ins tead  of 

adopt ing  te rminology  f rom graph  theory  in this work  we shall use te rms  m o r e  

sui table for  symbol ic  dynamics .  For  this reason  we call T a transition matrix. It is 

a one  s tep rule which governs  the a l lowable  immed ia t e  successors of a symbol  in 

an admissible  n -b lock  or sequence .  T defines admissible  2-blocks and con- 

versely.  Regard ing  nota t ion  we shall occasional ly write i --~ j for  t~j > 0 or  for  the 

fact that  ( i , j )  is admissible.  Also we shall find it convenien t  to write s r J~ for  the 

(/' - i + 1)-block (~i, sCi+l, "" ", ~:j) where  ~:k is the k th  c o m p o n e n t  of an n -b lock  or 

s equence  ~:, and some t imes  s I, = s r [i = ~:~ for  the i th  c o m p o n e n t  of ~. 

Let  (T )  deno te  the subspace  of b Dz consisting of two-s ided T-admiss ib le  

sequences ;  and o, the shift t r ans fo rma t ion  on (T) ,  i.e., try: [. -- ~: J , . ,  s r E (T) .  In 

the subspace  topology  of the usual p roduc t  topology  on 5 ~z originat ing f rom the 

discrete  topo logy  on 5e the space  (T)  is compac t  metr ic  and t r a  h o m e o m o r p h -  

ism. The  pair  ((T),  tr) is an abs t rac t  dynamica l  sys tem called by var ious  names,  

intrinsic Markov chain, topological Markov shift, and subshift of finite type. 
T is said to be irreducible if for  i, j E 5e there  is an integer  n depend ing  on i, j 

such that  t!"~ ~ n i.e., there  exists an admissible  n -b lock  beginning with i and . 1 /  - -  v ,  

ending with j. A cycle is def ined as an admissible  n -b lock  with the same  initial 

and final symbol .  The  greates t  c o m m o n  divisor of cycle lengths minus  one  is 

called the period of T. In this p a p e r  T will be  called aperiodic if there  exists an n 

such that  T"  > O, i.e., ~") t~j > 0 for  i, j E 5r It can be shown that  T is aper iodic  if 

and  only if T is i r reducible  and has per iod  1. 

3. Main theorem 

Let  T1 and T2 be two aper iodic  transi t ion matr ices  of d imens ion  N1 x N'I and 

N2 x N2 respect ively  having h as c o m m o n  maximal  character is t ic  value.  In this 

p a p e r  we shall a ssume h is an integer.  Then  there  exists an aper iodic  T3 with the 
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same maximal characteristic value h and mappings Irl and r of (T3) into (TO 

and (T2) respectively such that 7r, and 7r2 are 

i) onto, 

ii) finite-to-one, 

iii) continuous, 

satisfy 

iv) fro-3 = 0-aTr~, 77"20"3 = 0"2"7/'2, 

and are 

v) one-to-one onto after removing from (TO, (T2) and (T3) shift invariant sets 

having measure zero with respect to any of the existent shift invariant ergodic 

probability measures which are positive on open sets. 

o3 
(T3)  =- (7"3) 

/ 
0"~ ~ 

(T,) ~ ~ (T~) ( r 2 ) - ~  ~"(T2)  

LEMMA 1. Let T be an irreducible N x N transition matrix with maximal 

positive characteristic value h, an integer. Then there exists an irreducible IV • IV 

transition matrix 7" with row sum h and a mapping 7r of ( 7") into ( T) such that zr is 

i) onto, 

ii) finite-to-one, 

iii) continuous, 

satisfies 

iv) zr0- = 6Ir 

and is 

v) a one-to-one map of ( T ) -  f (  onto ( T ) - W  where fr and 2r are shift 

invariant sets of measure zero with respect to any of the existent shift invariant 

ergodic probability measures which are positive on open sets. 

PROOf. Since T is irreducible there exist cycles. Relabeling if necessary we 

can assume that c = (1, 2 , . .  -, i0, 1) is a cycle of minimum length. This means that 

the upper left i0 • io block of T has the following form: 
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0 1 0 

0 0 1 

0 

0 0 0 1 

1 0 0 

From the Pe r ron -F roben ius  t heo rem on nonnegat ive  matrices 

positive numbers  and in this case integers v,, 1 _-< i < N such that 

/q 

(*) ~ t,, vj = Avi. 
/ = 1  

there  exist 

The  symbol set ~ for  T is defined by 5e = {(i, a )  : 1 < a < v~, 1 < i = N}. For  a 

given i let j~ < j2 < �9 �9 �9 < ],,, be the indices such that t,.j~ = 1, 1 =< k =< K,. Cons ider  

the following subset {Ok,/3): 1 =</3 _-<' vk, 1 =< k =< Ki} of 5 ~ in lexicographic order .  

Because  of (*) we can relabel the e lements  of this subset by {b~-l~,+j: 1 _-< l =< A, 

1 =< a =< u,} and order  lexicographically. We construct  'F by defining the admissi- 

bIe transit ions for  (i, a ) ,  namely 

(i, a)---~ be, l)A+l, br �9 �9 ", b~ ; 1 _-< o~ < v~. 

has row sum A. 

To  prove ]P is i rreducible we must show any (j,/3) E 5r can be " r e a c h e d "  from 

any (i, a )  ~ .5 ~ In one  step A symbols are reached f rom (i, or). In the second step 

the transit ions spread out still fur ther ;  and f rom the way 2P is const ructed we see 

that eventual ly  some (k, 1) can be reached  from (i, a ) .  F rom (k, 1) the transit ions 

spread out until they eventual ly include all (l, y),  1 < y -< v~ for some l. Because 

T is irreducible/" can be reached f rom I. Thus  (/',/3) can be reached f rom some 

(t, ~/). 
Let us define a project ion Tr of ,~ on to  ~ by zr(i, a )  = i. Since ( r r ~ , - . . ,  7r~.) is 

T-admissible if ( ~ , - . . , ~ , )  is ~P-admissible, we can define a mapping again 

deno ted  by 7r of T-admissible n-blocks  or sequences  to T-admissible n-blocks  

or sequences  defined by ~-(. �9 ~k,""" ) = ( ' "  ", ~-~k, ' ' '  ), k @ Z. The  mapping rr 

of (T)  to (T)  is obviously cont inuous  and satisfies 7r6" = o'zr. 

has the following feature,  the proof  of which is immedia te  f rom its 

construct ion:  for (/',/3) if i-->] then there  is a unique a such that (i, a ) - *  (j,/3). 

Thus  given a T-admissible one-sided left infinite sequence  ( . . . ,  ~r162 and 

~,1 ~ ~ such that ~'~o = ~:o there  exists a unique "l~-admissible one-sided sequence  
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( ' "  �9 ~-1, ~o) such that ~r~,, = ~:,, m --- 0. We shall call this fea ture  the conditional 
le[t resolving property of 7r. The  term "condi t iona l"  describes the fact that 

( " "  ~-1, ~o) is not  de te rmined  by ( . . . ,  ~-1, ~o) until (o is specified. One  consequ-  

ence of the resolving proper ty  is that ~r is onto:  for  given any two-sided 

T-admissible  ~ = ( . . . ,  ~ : , - 1 , ~ , , ' " )  we can find for each n a one-s ided T- 

admissible sequence  ( . . .  r 1, ~,) such that ~, ~ 7r '~,. By a diagonal a rgument  

we can find ( E ( ' / ~ )  such that ~-~ = ~. Also, f rom the resolving proper ty  

it is easy to see that 7r is everywhere  finite-to-one. We shall now prove  in 

addit ion that it has the asserted almost everywhere  one- to -one  proper ty .  We 

shall call any T-admissible n-block b = (b l , "  ", b,) resolving for Ir -I if at least 

one  c o m p o n e n t / ~  of/~ = (/~1, �9 �9 �9 ~ ~r-lb is uniquely de termined.  By the left 

resolving p roper ty  of ~r the componen t  /~1 will always be one  of  the uniquely 

de te rmined  ones. Let b = ( 1 , 2 , . . . ,  io, 1 . . .  1 , . . . , i , , ,  I) be a T-admissible block 

consisting of m repet i t ions of the cycle c. We shall show that b is a resolving 

block if m is chosen large enough.  Cons ider  the possible 7~-admissible blocks 

/~ E 7t-'b, i.e., /~ = ((1, ~ ) ,  (2, a2)" �9 �9 (i0, a, ,o),  (1, ~,,,o+,)). The re  are ul choices 

for  a ~o+~. If u~ = 1 we are done.  If ~,~ > 1, f rom the way 7" was const ructed  there  

are fewer  choices for  a,~o than for a,,~o+l: actually there  are u~/A or [ul/;t] + 1 

choices depending  on whe ther  A divides u, or not.  Cont inuing in this manner  

each step to the left cuts down the number  of al ternatives for  the second 

coord ina te  of the componen t s  of 6 until we are down to a single possibility. 

The re fo r e  if m is large enough (m > [~,l/;t] + 1 will more  than suffice) then 

(1, a~) = (1, 1). By the left resolving proper ty  of lr for  every  sequence  ~: E (T)  in 

which b occurs infinitely of ten to the right there  exists a unique ~ ~ (T)  such that 

~ = ~. The  cyl inder  set B = {~: : ~: [7 '~247 = b} is open  hence  will have positive 

measure .  F rom the ergodic  t heo rem the subset ~c of (T)  of ~: for  which b does 

not appear  infinitely of ten to the right, i.e., X = {~:ltr'~: E B for  only finite 

number  of n => 0}, has measure  zero with respect  to any ergodic shift invariant 

measure  which is positive on open  sets. The  same is t rue for ~ = 7r-~N. The  

irreducibil i ty of (T)  and (T)  insures the existence of ergodic shift invariant 

probabi l i ty  measures  which are positive on open sets. 

4. The road coloring problem 

Let  ~ = {1, �9 �9 N} be a symbol  set and T an N • N transition matr ix with row 

sum A (an integer).  We shall call a set of  maps p~, i = 1,2,-  �9 A of b" into 5e a 

road coloring for T if (a, p l (a)) , . . . , (a ,p~(a))  are distinct T-admissible two- 

blocks for  each a E b ~ Let  ~ *  = { 1 , 2 , . . . , A }  and T* be the A x A transition 
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matrix having all entires equal to 1. Associated with a road coloring is a mapping 

p of (T) to (T*) defined by p ( . - . , G , ~ , . ~ . . . ) = ( - . . , ~ * , , ~ * * ~ . . . )  where 

p~;(G) = G§ It is easy to see that p has what can be called a conditional right 

resolving property; i.e., given a T*-admissible one-sided right infinite sequence 

(~*, ~ * , . . .  ) and ~: there is a unique one-sided sequence (~, ~2,""  ) such that 

p(~ ,  ~2,'" " )=  ( ~ ' , ~ * , '  "). We say a road coloring { p , . . . ,  p~} is resolving if 

there exists an n-tuple (p~,,...,p~.) of maps from {p~, . . . ,p ,}  such that 

p~, o . . . .  p~ o p~, 90 consists of a single element of 5r 

LEMMA 2. I f  T is an irreducible transition matrix with row sum h and has a 

resolving road coloring {ph'" ", P~} then the associated map p of ( T)  to ( T*) is 

i) onto, 

ii) finite-to-one, 

iii) continuous, 

satisfies 
iv) p~r = o'*p 

and 

v) maps ( T ) - W  one-to-one onto ( T * ) - W *  where .A r and W* are shift 

invariant sets of measure zero with respect to any of the existent shift invariant 

ergodic probability measures which are positive on open sets. 

PROOF. The argument for (i), (ii), (iii) and (iv) is the same as for ~t in Lemma 1. 

To establish (v) we can take (p,,,-..  p,~) to be an n-tuple of maps such that 

p , . . . .p , ,9~  Let b * = ( i , , . . . , i . ) .  Then b* is resolving for p- '  because 

b,§ = 1 for any T-admissible b = ( b 1 " .  b..l) where O,~(bj)= bj+,, 1 <=j <= n. 

By the right resolving proper tyof  p for every ~* E (T*) for which b* occurs 

infinitely often to the left there is a unique ~ ~ (T) such that p(~) = ~*. The 

remainder of the proof is a repetition of the final argument of Lemma 1. 

LEMMA 3.  I f  T and T are two irreducible transition matrices having row sum )t 

(an integer) and resolving road colorings {p, , . . . ,  p,} and {~, . . ., ~ } respectively 

then there exists a T also with row sum A and mappings rr and ~r of ( T)  into ( T)  
and ( T)  respectively such that rr, ~r are 

i) onto, 

ii) finite-to-one, 

iii) continuous, 

satisfy 
iv) lr# = o-Tr, ~'~ = ##  

and are 
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v) one-to-one onto after removing from the three spaces shift invariant sets of 

measure zero with respect to any of the existent shift invariant ergodic probability 

measures which are positive on open sets. 

(T) 

( T * )  

PROOF. Let t5i,'" ",t3~ denote mappings of Sex 5? into Se • 5 ~ defined by 

t3,(u, t i )=  (p,(u),t3~(ti)), l=<i=<h. Let T' denote a transition matrix on 9 ~ 

9~ x 5 ~ defined by the transitions 

t o - "  ", 

where ~o = (u, t i )E  Sex ~. T' has row sum h. Because the road colorings are 

resolving and the transition matrices are irreducible we can assume that there 

exist an m-tuple ( i , , . . . , i , . )  and an n-tuple ( j , - . . , j . ) s u c h  that p, . . . p , , s e =  

fij . ."  fij, 5 ~ = {1}. Let a = pj . . . .pj , (1) .  Then A6j.'''~6hC3,.'''16,,(to)= (a, 1) for 

any to ~ 9  ~  ~. There exists a r '-cycle: namely (a, 1)~tS,,(a, 1) 

--*'""---~ A6j." �9 �9 t~, (a, 1) = (a, 1). 

Let ~ denote the nonempty irreducible component of 9~ containing (a, 1) and I" 

the transition matrix defined on ~ with transitions inherited from T'. T also has 

row sum A. In addition t~l,'" ", t3, defines a resolving road coloring for 7". We 

define the natural projections ~r, ~" by or(u, ti) = u and "ti'(u, ti) = ti. The proof 

that these mappings are finite-to-one, onto, continuous and commute with the 

shifts is the same as in the previous lemmas. The proof of the one-to-one 

property is also similar. Let us just mention that ~r and ~" are right resolving. So 

are the maps P and fi of (T) and (T) onto (T*) associated with the road colorings 

as described in the previous lemma. The T*-admissible (m + n)-block b * =  
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(iL,. . . ,  imjl," ",in) is resolving for both p-1 and ~-1 since p-lb*lm§ = a and 

~- 'b* [m§ = 1. In addition p-~b* and ~-~b* are resolving for zr and w -~, because 

~r-'p-~b* [,,+, = "fi'-'~-'b* I,,+~ = (a, 1). 

PROPOSITION. I f  T is irreducible and there exists a resolving road coloring then T 

is aperiodic. 

PROOF We can assume that p, . . . p , , b  ~={1}.Thus 

1-->p,,(1)---~p,~p,,(1)--~...---~p,..- p,,(1) = 1 

is a cycle of length n + 1 and 

l ~ p , , ( 1 ) ~ p 2  ( 1 ) ~ . . . ~ p ,  ..-p,,(p,,(1)) = 1 

is a cycle of length n + 2. Hence 1 is the greatest common divisor of cycle lengths 

minus one. Conversely we state the following. 

CONJECTURE. If T is aperiodic then there exists a resolving road coloring. 

Many examples have been tested but a counter example for the conjecture as 

well as a proof has so far failed to show up. 

We shall now explain the origin of some of the above terminology. We 

imagine 9' to be a set of cities and T to define a system of one-way roads 

connecting them. Each city has h exit roads (a city having a road leading to itself 

is not excluded). The highway department has h colors with which to paint the A 

different roads leading from each city. The road from city i to j is colored K if 

pK (i) = j. If a resolving road coloring exists then the roads can be painted so that 

a motorist upon calling the National Automobile Club to inquire how to get to 

city 1 is not asked where he is presently at but merely told to follow a certain 

finite sequence of colors. Motorists from each city will simultaneously arrive at 

city 1 folowing this sequence. True, some may have passed through city 1 several 

times but that is besides the point. 

Perhaps working an example at this point would be helpful. Let T be given by 

the following transitions: 

1 ~ 2 , 6  

2 ~ 1 , 4  

3--->4,5 

4---1,3 

5---*2,3 

6---,1,2 
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H e r e  A = 2 a n d  it is e a s y  to  ve r i fy  t h a t  T is a p e r i o d i c .  P i c t u r e  t h i s  as  6 c i t i e s  

c o n n e c t e d  by  o n e - w a y  r o a d s  

1--->2 

2---)1 

3--->4 

4 - - - 1  

5 - - * 2  

6---)1 

b e  c o l o r e d  r e d  a n d  t h e  o t h e r s  b l u e .  T h e n  

Red Red Blue Red 

1 ~ 2 ~ 1 ~ 6 ~ 1 

2 ~ 1 ~ 2 ~ 4 --~ 1 

3 ---* 4 ~ 1 ~ 6 ~ 1 

4 ~ 1 ~ 2 --* 4 ~ 1 

5 ~ 2 ~ 1 ~ 6 ~ 1 

6 ~ 1 ~ 2 --~ 4 ~ 1 

L e t  t h e  r o a d s  
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5. A method bypassing the unsolved conjecture 

Given  transi t ion matr ix  T with symbol  set 50 and  assuming n > 1 let us deno te  

by 50~") the set of T-admiss ib le  n -b locks  and  by  T r the t ransi t ion matr ix  for  50~") 

def ined by u = ( U l , "  ", u,)----~ v = ( v l , ' '  ", v , )  if u I~ = v I~ '-~. For  n = 1 we set 

50~1)= 50 and T ~1) = T. 

( T  r is obviously  h o m e o m o r p h i c  to (T )  and  the na tura l  h o m e o m o r p h i s m  0 

def ined by 

o ( . - -  u - - - ,  u u ) = ( " "  u_, ,  uo, u l , - . .  ) 

satisfies the  c o m m u t i n g  relat ion be tween  the shifts on ( T  ~"~) and (T) .  If T has 

row sum A then  so does  T t"). Eve ry  road  color  of  T gives rise to one  for  T ~"~ but  

T t"~ has m a n y  more .  For  this reason  it b e c o m e s  easier  with large enough  n to 

solve the  con jec tu re  of Sect ion 4. 

LEMMA 4. I f  T has row sum A and T" > O, then there exists a road coloring 
{p l, " " ", pA } of T t2") such th at p 3.-2pz p ~,-3 ~o(2n ) consists of a single element of 50~2,). 

Let  C be a s imple  cycle, that  is one  containing no subcycles.  Re labe l ing  if 

necessary  we can assume C = ( 1 , 2 , . . . ,  io, 1). It  will be  conven ien t  to let (C)  

d e n o t e  the  e l emen t  of  ( T )  consist ing of  infinite repet i t ions  of  the  cycle C with 

( C )  l0 = 1. In T tk) there  is a special  cycle deno ted  C tk) which co r responds  to C in 

T, name ly  
c = -1, . .  . ,  

A n  e l emen t  u ~ 9 ~162 said to be  in C r and  with a slight abuse  of no ta t ion  let us 

wri te  u E C ~ ,  if u = (C)I} +k-I for  s o m e  L For  u ~ 50~2.)let l(u) be defined as the 

largest  l such that  u I~ E C ") if u [1E C ~ or  l(u) = 0 if u I1 ~ C ~ l(u) measures  

how much  of the  tail of u lies in C. F r o m  the hypothes is  T"  > 0 for  every  a E 5e 

there  is a p ( a ) E  50~") such that  p(a)l l  = a and p(a) l .  = 1. p(a)  is the  " p a t h "  

f r o m  a to 1. In o rde r  to " c o l o r "  T r we give th ree  rules for  choosing p~(u) for  

each  u E 50~"). The  remain ing  02(u) ,"  ", p~(u) are  chosen arbi t rar i ly  f rom the 

o the r  v for  which u--*v. I. If  l (u )=2n ,  i.e., u = (C)I~ "+j- '  E C  ~2"~ then we 
2 n + i  define p~(u) = (C)Ij+I �9 II .  If  l ( u )  < n then e i ther  u 12- is k s teps away  f rom C 

a n d p , ( u ) i s  chosen so that  p,(u)l~, is k - 1 steps away or u I~- = (C)I~ a n d o , ( u )  

is chosen so that  p1(u)12.=(C)[~+~. IaI. If n < l ( u ) < 2 n  and u I,,.,+, 

p(u J,.)+,)l~ "-""~ then we choose  pa(u) so that  p~(u)12. = p(u I, .)+01z.-, . ,+l.  On  

the  o the r  hand  if n < l ( u ) < 2 n  and u I~r [~r ~"-"") then p~(u) is 

chosen arbi trari ly.  Rule  I keeps  e l emen t s  of  C ~"~ in it. Rule  I I  sends e l emen t s  

not  in C ~") "c lose r "  to it. Rule  I I I  cont inues  to direct  u 12- on the n - s t ep  pa th  
2n f rom u I~r ~ C to 1 if u t,.~+1 is a l ready  on it. T h e  m a p p i n g  pt : 50--~ 5 ~ has the 

fol lowing four  easily verified proper t ies :  
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1) u E C (2") f f  p,(u)~ C~2"); 

2) u 12."+, c '") 

3) u l :  +1 ~ C ( 2 ) ~  p'~-'(u)[2. GC; 
4) u 17, +1 ~ C (2) and u ]2. E C ~ p'(-l(u)[2."+lE C ("~. 

2n c ( n )  We shall now prove p~"-3(u) ~ C ("). There are two cases. First if u [.+1 E we 

apply (2) and then (1) to get p~"-3(u)E C (2"). In the second case there is an i, 

0 -<_ i _-< n - 1 such that u [~i +' ~ C t2). Therefore p~ (u)[~+1 ~ C (2). Now there are 

two subcases. In the first p~(u)[:. E C. We apply (4) to get p~'-l+'(u)[~ ~ C t") 

and then (2) to get p~"+'-~(u) E C ~2"~. In the second case p[ (u)[:.  ~ C. We apply 

(3) to get pT+~-~(u)[2. E C, then (4) to get p~"+'-2(u)I~l E C ~), and finally (2) to 

get p3"+'-2(u)E C (2"). In either of these subcases we can use (1) to get 

p~"-3(u) E C (2"). At this stage all elements of p~.-3~(2.) are in C t2"~ but they may 

he out of "phase".  To get them in phase we proceed as follows. From (1) and the 

definition of road coloring we have that p2p~"-3(u)~ C (2"). Here l(p2p~"-3(u))= 
2 n - 1  with p2p~"-3(u)l~,_l ~ C t2). Repeated applications of Rule III yields 

p'~-~p2p~"-3(U) 12" = I with p'~-lp2p~"-3(u ) [~+1 ~ C(2). We apply (3) and then (2) to 
3 . - 2  4.--3 get p~"-2pzp~n-3(U)~. C (2'O with p~ p2p~ (U)[1 = 1. There is only one element 

v G C (z") with v [1 = 1: namely, v = p~"-Zp2p~"-3(u) = (1,2, . - - ,  (C)f2._ 0. 

6. Conclusion 

The proof of the main theorem is merely a combination of the four lemmas. 

The following diagram explains all. 

(?) 

(??.)) 

(T,) (T*) (T2) 
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Addendum (Added in proof January 23, 1977) 

The  purpose of this addendum is to r emove  the restriction of aperiodici ty in 

the main theorem.  

THEOREM. Let T~ and T2 be two irreducible transition matrices of period p with 

A = integer as common maximal characteristic value. Then there exists an 

irreducible 7"3 with the same period and maximal characteristic value ,t and 

mappings orj and rrz of (TO into (7"1) and (T:) respectively such that or~ and or2 are 

i) onto, 

ii) finite-to-one, 

iii) continuous, 

satisfy 

iv) or~ 0"3 = O'1 orl, or2 0"3 ~--- O'2 7'/'2, 

and are 

v) one-to-one after removing from (T0 ,  (T2) and (T3) shift invariant sets 
having measure  zero with respect  to any of the existent  shift invariant ergodic 

probabi l i ty  measures  which are positive on open  sets. 

We shall abbrevia te  the last participle phase in (v) to "having maximal entropy 

measure zero". This te rminology is more  than mere  convenience  and the reader  

can consult  W. Parry,  Intrinsic Markov chains, Trans.  Amer .  Math.  Soc. 112 

(1964), 55-66, for  addit ional  background  material  on it. 

We  shall now proceed  with modifications needed  to p rove  the theorem.  

Cor responding  lemmas will be numbered  as before .  

PROOF OF THEOREM. An irreducible  transit ion matrix T has per iod p if and 

only if it has the following proper ty  (P): 

The  symbol  set 5e=  { 1 , . - . , N }  can be par t i t ioned into p disjoint sets 

5e = 5e 0 to 5e 1 tO �9 �9 �9 tO 5ep_l such that the transit ion i--+j can only occur  if i E 5e~ 

and j E oW~+,t.,oae~. A n d  fu r the rmore  T p acts on 5r aperiodically:  that is, there  

exists an m such that for  every  k, 0 < k _-< p - 1, if i, j E Sek then "t"P~ > tl 

LEMMA 1. Let T be an irreducible N x N transition matrix with maximal 

positive characteristic value ;t = integer. Then there exists an IV x I(1 transition 

matrix T with row sum A and a mapping or of (T) into (T)  such that or is 

i) onto, 

ii) finite-to-one, 

iii) continuous, 

satisfies 
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iv) fro" = 6"r 

and is 

v) a one-to-one map of ( 7 " ) - s  onto ( T ) - X  where X and s are shift 

invariant sets of maximal  entropy measure zero. 

Furthermore if T has period p so does 7". 

PROOF. T h e  first s t a t emen t  has a l ready been  p roved  in w T h e  second  follows 

f rom the fact that  T inheri ts  p rope r ty  (P) f rom T by vir tue of the fact that  rr is a 

one -b lock  m a p  satisfying (iv). 

Next  we let 5 ~* = {(i, j )  : 1 -< i _-< A, 0 _-< j _----- p - 1} and  define the  canonical  row 

sum A per iod  p t ransi t ion matr ix  T* by the t ransi t ions ( i , j ) --~(i ' , j ' )  for  all i, i '  

w heneve r  j '  = j + 1 (mod p) .  T h e  symbols  of 9~ can be o rde red  so that  T* takes  

the fo rm of a hp • hp matr ix  

[0] [1] 

[o1 [o1 

T*=  

[1] 

[01 

[01 

[0] [01 [11 

[1] [01 

where  [0] is a A • A matr ix  of zeros  and [1] a ;t x A matr ix  of ones.  For  arbi t rary  

T with row sum A and per iod  p for  which 5" = 9~ U .  �9 �9 U ~p_~ according to 

p rope r ty  (P) we can define a mapp ing  p : ( T ) - - ~ ( T * )  given a road  coloring 

( p l , " ' , p ~ )  by p ( . " r 1 6 2 1 6 2 1 6 2  where  r  

such that  j*  = k if r E ~k and i* is de t e rmined  by p~,  (r  = r F u r t h e r m o r e  

we say {pl, .  �9 p~ } is resolving if there  exists an n - tup le  (p~, �9 �9 -, pi.) of maps  f rom 

{pl, �9 �9 ", p,} such that  pi, o . . . .  p~,~k consists of a single e l emen t  for  at least one  of 

the ,.,%. Actual ly  once  this happens  for  one  ~k it can be  a r r anged  to happen  for  

all. 

LEMMA 2. If T is an irreducible row sum A transition matrix with period p and 

has a resolving road coloring {p~, �9 �9 p~ } then the associated map p of ( T)  to ( T*) 

is 

i) onto, 

ii) finite-to-one, 

iii) continuous, 

satisfies 

iv) ptr = o'*p, 
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and 

v) maps ( T ) - N  one-to-one onto ( T * ) - X *  where N and N* are shift 

invariant sets of maximal entropy measure zero. 

PROOF. Suppose p~ .-.p~,Se~ consists of a single e lement ,  say 1. Let  b * =  

((i1,]0,'" .,(i,,jn)) where  j~ = i +  k - 1  ( m o d p ) .  Then  b* is resolving for  p- i  

because  b,+l = 1 for  any T-admissible  b = ( h i , . ' . ,  bn+~) where  b~ E 6ek and 

p~j(bj) = bs+~, 1 <=] <= n. The  rest of the proof  is the same as in w 

LEMMA 3. If  T and T are two row sum A irreducible transition matrices having 

period p and resolving road colorings {P~, " " ", P~ } and {~,  . . ., ~ } respectively, 

then there exists T also irreducible with row sum A and period p and mappings rr 

and # of (J') to (T) and (T)  respectively such that 7r, ~r are 

i) onto, 

ii) finite-to-one, 

iii) continuous, 

satisfy 
iv) 7r~ = o'zr, 1r~ = 6"#, 

and are 

v) one-to-one onto after removing from the three spaces sets of maximal 

entropy measure zero. 

PROOF. Suppose  pi.'' 'p~,b~ and t~ , . ' "g j ,  5~ consist of single elements.  By 

irreducibility we can assume the two e lements  are labelled the same,  say by 1. 

We  can also assume k = k-= 0 and 9~ and ~o both  contain 1. This means  we 

must  take m = n = 0 (rood p).  Let  a = p~. - �9 - Pi, (1) E 5~ Then  

~ s ' " ~ i ~  . . . ~ ( w ) = ( a ,  1) for  w = ( u ,  fi), u~'b~o, t ~ , ~ o .  We  see that 

{ t~" ' tS~} is resolving for  ~" by not ing that 7" satisfies p roper ty  (P) with 

= ~0 t_l �9 �9 �9 t3 ~p_~ where  5ek = ~ fq (b"k • if'k). The  remainder  of the proof  is 

the same as in w 

LEMMA 4. If T is irreducible with row sum A and.period p, then there exists a 

resolving road coloring {P~,'" ",P~} of T (2~) where n = mp with m defined by 

property (P). 

PROOF. Let  C be a simple cycle as in w We  can assume the symbols  of b ~ are 

labelled so that  C = ( 1 , 2 , . . . , p , p  + 1 , . - . , io ,1 )  and CIk ~ ~k_~(~,~p)where ~ is 

par t i t ioned by 5e = b~0 t3 �9 �9 �9 tJ 5ep_~ according to proper ty  (P). Because  n = m p  

we can define for  each a E 5ek, 0__ < -- k =<p - 1, an e lement  p ( a ) ~  6e(*)such that  

p(a)l~ = a and p ( a ) ] ,  = k + 1. The  rules for coloring T (2n) are the same as in w 
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W e  get  3 . - z .  ~4n-3(..O(2n) 3n-2 4n-3 p ,  ~,~e~ ~, C__C (~") and  O~ O~P,  ( u ) l ~ = k + l  + ( 7 n - 5 + 1 )  

( m o d p )  w h e n e v e r  u I1 E S~ for  u ~ b "(2~). F o r  each  k the re  is only  o n e  v ~ C (2") 

sat isfying v I1 = k + 7n - 5 ( m o d p ) .  Thus  Se(2-) can be  p a r t i t i o n e d  accord ing  to 
(40(2n) p r o p e r t y  (P) by  5e(2.) = 0%2.)to . . .  tO ~,p-1 where  ~ 2 n )  = {U ~ QO(2n): U I1E ~Ok} 

and  - 3 . - 2 ~ .  4.-3 (p(2n) ~'1 ~'Z~'l ~'k consis ts  of  a single e l e m e n t  for  every  k. 

B IBLIOGRAPHY 

1. R. Adler and B. Weiss, Similarity ofautomorphisms of the toms, Mem. Amer. Math. Soc., No. 
98 (1970). 

2. B. Weiss, The structure of Bernoulli systems, Proc. of Int. Congress of Math., Vancouver, Vol. 
2, 1974, pp. 321-325. 

IBM THOMAS J. WATSON RESEARCH CENTER 
YORKTOWN HEIGHTS, NEW YORK 10598 USA 

UNIVERSITY OF KENTUCKY 
LEXINGTON, KENTUCKY 40506 USA 

AND 

THE HEBREW UNIVERSITY OF JERUSALEM 
JERUSALEM, ISRAEL. 


