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EQUIVALENCE OF TOPOLOGICAL
MARKOV SHIFTS

BY

ROY L. ADLER, L. WAYNE GOODWYN
AND BENJAMIN WEISS

ABSTRACT

We show that any two topological Markov shifts both of whose topological
entropy equals log n (for some n) are equivalent by a finitistic coding.

1. Introduction

How are two dynamical systems with the same topological entropy related?
Can a theory be developed for topological entropy analogous to that of
Ormnstein’s for Bernoulli shifts? Examples abound of systems having equal
entropy but different number of fixed points. Therefore topological conjugacy is
too strong an equivalence to yield anything interesting. We shall establish a
weaker type of relation for the class of topological Markov shifts (shifts of finite
type). We first deal with the aperiodic case and a restriction on the value of the
topological entropy. Removal of these restrictions will be left to subsequent
work.

The present notion of equivalence involves the construction of continuous
maps which are not invertible in the topological sense. However, they are in the
measurable sense and consequently provide measure theoretic isomorphisms
between Markov shifts with the same maximal measure entropy. This type of
isomorphism has a special property which might be described as finitistic coding,
which means loosely speaking that a component of a sequence in the range of the
isomorphism is determined by a finite, though not necessarily uniformly finite,
number of components of the preimage. An example of this appeared in [1] but
the idea was not developed there. A precise definition along with a brief
discussion was presented in [2].

The authors wish to express their gratitude to Wm. Parry, the University of
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Warwick, and the British Science Research Council for the opportunity of
attending the 1975 symposium on ergodic theory during which some ideas of this
paper crystallized, especially in discussions with Wm. Parry.

2. Preliminaries

Consider a set ¥ ={1,-+, N} of N symbols and an N x N matrix T = (t;) of
zeros and ones. An n-tuple, sometimes called an n-block, (£,, - - -, &) of symbols
LES, i=1,--- n, is said to be T-admissible if t,.,,=1,i=12,---,n—1
Left infinite sequences (- - - £-,, £-,), right infinite sequences (&, &1, - - ) and two
sided infinite sequences (- - - £€_1, &, &1, + - + ) of symbols from & are likewise called
T-admissible if t; ., =1forn=-2,n=0, and n € Z respectively. Instead of
adopting terminology from graph theory in this work we shall use terms more
suitable for symbolic dynamics. For this reason we call T a transition matrix. It is
a one step rule which governs the allowable immediate successors of a symbol in
an admissible n-block or sequence. T defines admissible 2-blocks and con-
versely. Regarding notation we shall occasionally write i — j for ; >0 or for the
fact that (i, j) is admissible. Also we shall find it convenient to write ¢ || for the
(j — i + 1)-block (&, &-1, -+ +, &) where & is the kth component of an n-block or
sequence £, and sometimes £ |, = £ || = & for the ith component of £.

Let (T) denote the subspace of #* consisting of two-sided T-admissible
sequences; and o the shift transformation on (T), i.e., 0€ o = € |ae1, EE(T). In
the subspace topology of the usual product topology on ¥* originating from the
discrete topology on & the space (T) is compact metric and o a homeomorph-
ism. The pair ((T), o) is an abstract dynamical system called by various names,
intrinsic Markov chain, topological Markov shift, and subshift of finite type.

T is said to be irreducible if for i, j € & there is an integer n depending on i, §
such that t{’ >0, i.e., there exists an admissible n-block beginning with i and
ending with j. A cycle is defined as an admissible n-block with the same initial
and final symbol. The greatest common divisor of cycle lengths minus one is
called the period of T. In this paper T will be called aperiodic if there exists an n
such that T" >0, i.e., t{>0 for i, j € &. It can be shown that T is aperiodic if
and only if T is irreducible and has period 1.

3. Main theorem

Let T, and T, be two aperiodic transition matrices of dimension N, X N; and
N, x N, respectively having A as common maximal characteristic value. In this
paper we shall assume A is an integer. Then there exists an aperiodic T with the
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same maximal characteristic value A and mappings 7, and m, of (T) into (T))
and (T>) respectively such that r, and =, are

1) onto,

ii) finite-to-one,

iii) continuous,
satisfy

V) o= 0.7, T05= 0,7,
and are

v) one-to-one onto after removing from (T,), (T;) and (T5) shift invariant sets
having measure zero with respect to any of the existent shift invariant ergodic
probability measures which are positive on open sets.

/ Tz)\z(m
YO = —(T:) (T,)~—=— —=(T,)

LemMAa 1. Let T be an irreducible N X N transition matrix with maximal
positive characteristic value A, an integer. Then there exists an irreducible N x N
transition matrix T with row sum X and a mapping 7 of (T) into (T) such that  is

1) onto,

ii} finite-to-one,

ili) continuous,
satisfies

iv) 7o = &
and is

v) a one-to-one map of (T)~ N onto (T)—N where N and N are shift
invariant sets of measure zero with respect to any of the existent shift invariant
ergodic probability measures which are positive on open sets.

Proor. Since T is irreducible there exist cycles. Relabeling if necessary we
can assume that ¢ = (1,2, - -, iy, 1) is a cycle of minimum length. This means that
the upper left i, X i, block of T has the following form:
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From the Perron-Frobenius theorem on nonnegative matrices there exist
positive numbers and in this case integers », 1 =i = N such that

N
(*) Z t.‘,' Vv, = /\V,'.
j=1

The symbol set & for T is defined by #={(i,a):1=a=v, 1=i=N}. Fora
given i let j, < j,<:.-<jg be the indices such that ¢,, = 1, 1 = k = K.. Consider
the following subset {(ji, 8): 1 = B = u, 1 = k = K.} of & in lexicographic order.
Because of (*) we can relabel the elements of this subset by {b_1p+i: 1S 1= A,
1 = a = 1} and order lexicographically. We construct T by defining the admissi-
ble transitions for (i, ), namely

(i» a)_’ b(a—mn, b(a-])/\+2, Ty, box 1= a=vw.

T has row sum A.

To prove T is irreducible we must show any (j, 8) € ¥ can be “‘reached” from
any (i, a) € & In one step A symbols are reached from (i, @). In the second step
the transitions spread out still further; and from the way T is constructed we see
that eventually some (k, 1) can be reached from (i, a). From (k, 1) the transitions
spread out until they eventually include all (/, y), 1 = y = v for some [. Because
T is irreducible j can be reached from I Thus (j, 8) can be reached from some
(Ly). } ) i

Let us define a projection 7 of & onto & by (i, @) = i. Since (7¢,, - - -, w&,) is
T-admissible if (£,---,£,) is T-admissible, we can define a mapping again
denoted by 7 of T-admissible n-blocks or sequences to T-admissible n-blocks
or sequences defined by = (- -, §~k, e )=(-- wfk, -++),k € Z. The mapping =
of (T) to (T) is obviously continuous and satisfies 7G = or.

T has the following feature, the proof of which is immediate from its
construction: for (j, 8) if i — j then there is a unique a such that (i, ) — (j, 8).
Thus given a T-admissible one-sided left infinite sequence (---, -, &) and
£, € ¥ such that 7€, = &, there exists a unique T-admissible one-sided sequence
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(--- &1, &) such that #€, = &, m =0. We shall call this feature the conditional
left resolving property of . The term ‘“‘conditional” describes the fact that
(- €., &) is not determined by (- - -, £-,, &) until & is specified. One consequ-
ence of the resolving property is that = is onto: for given any two-sided
T-admissible §=(~--,§,.A,', &, ++) we can find for each n a one-sided T-
admissible sequence (- - - .1, &) such that &, € 77'¢, By a diagonal argument
we can find £€ ("f) such that =& =& Also, from the resolving property
it is easy to see that m is everywhere finite-to-one. We shall now prove in
addition that it has the asserted almost everywhere one-to-one property. We
shall call any T-admissible n-block b = (by, - - -, b,) resolving for 77" if at least
one component b, of b=(b, -b)En'bis uniquely determined. By the left
resolving property of 7 the component b, will always be one of the uniquely
determined ones. Let b= (1,2,---, iy, 1...1,-- - i, 1) be a T-admissible block
consisting of m repetitions of the cycle c. We shall show that b is a resolving
block if m is chosen large enough. Consider the possible T-admissible blocks
ben'b ie, b=(1,a), 2, @) (io, @mi), (1, X mip+1)). There are v, choices
for a i1 If v, =1 we are done. If v, > 1, from the way T was constructed there
are fewer choices for a ., than for « ..:: actually there are v,/A or [vi/A]+1
choices depending on whether A divides v, or not. Continuing in this manner
each step to the left cuts down the number of alternatives for the second
coordinate of the components of b until we are down to a single possibility.
Therefore if m is large enough (m >[vi//A]+1 will more than suffice) then
(1, @) = (1, 1). By the left resolving property of m for every sequence ¢ € (T) in
which b occurs infinitely often to the right there exists a unique £ € (T') such that
wé = £ The cylinder set B = {£: £|7*" = b} is open hence will have positive
measure. From the ergodic theorem the subset & of (T) of ¢ for which b does
not appear infinitely often to the right, i.e., ¥ ={¢|o"¢& € B for only finite
number of n = 0}, has measure zero with respect to any ergodic shift invariant
measure which is positive on open sets. The same is true for #' = 7' . The
irreducibility of (T) and (T) insures the existence of ergodic shift invariant
probability measures which are positive on open sets.

4. The road coloring problem

Let ¥ ={1, -+, N} be asymbol set and T an N X N transition matrix with row
sum A (an integer). We shall call a set of maps p, i =1,2,---,A of Y into ¥ a
road coloring for T if (a, p:i(a)), -, (a,pr(a)) are distinct T-admissible two-
blocks for each a € ¥. Let $*={1,2,---,A} and T* be the A X A transition
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matrix having all entires equal to 1. Associated with a road coloring is a mapping
p of (T) to (T*) defined by p(--, &m&urr-")=(", &% ERi-+) where
pe.(£.) = £..1. It is easy to see that p has what can be called a conditional right
resolving property; i.e., given a T*-admissible one-sided right infinite sequence
(€1, £%,-++) and ¢ there is a unique one-sided sequence (£, &, - - ) such that
p(€, & )= (&1, €%, --+). We say a road coloring {p, -, px} is resolving if
there exists an n-tuple (p,,---,p,) of maps from {p,,---,p.} such that
pi. oo pi, op, & consists of a single element of &.

LEmMMA 2. If T is an irreducible transition matrix with row sum A and has a
resolving road coloring {p,, - - -, p.} then the associated map p of (T) to (T*) is

1) onto,

it) finite-to-one,

iii) continuous,
satisfies

iv) pc=0c*p
and

v) maps (T)— N one-to-one onto (T*)—~N* where N and N* are shift
invariant sets of measure zero with respect to any of the existent shift invariant
ergodic probability measures which are positive on open sets.

Proor. The argument for (i), (ii), (iii) and (iv) is the same as for 7 in Lemma 1.
To establish (v) we can take (p,, - pi.) to be an n-tuple of maps such that
pi - P ={1}. Let b* = (i1, *+,i,). Then b* is resolving for p~' because
b... =1 for any T-admissible b = (b; - - - b,.1) where p,(b;)=bj.;, 1 =j=n.

v By the right resolving propertyvof p for every £* € (T*) for which b* occurs
infinitely often to the left there is a unique £ € (T) such that p(£) = ¢*. The
remainder of the proof is a repetition of the final argument of Lemma 1.

Lemma 3. If T and T are two irreducible transition matrices having row sum A
(an integer) and resolving road colorings {p,,- -, p.} and {p, - - -, p.} respectively
then there exists a T also with row sum A and mappings 7 and # of ( T) into (T)
and (T) respectively such that m, 7 are

i) onto,

i) finite-to-one,

iii) continuous,
satisfy

iv) wé = om, 76 = o7
and are
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V) one-to-one onto after removing from the three spaces shift invariant sets of
measure zero with respect to any of the existent shift invariant ergodic probability
measures which are positive on open sets.

/(T)\\
(M (

(T*)

T)

PROOF. Let fy,- -+, p, denote mappings of ¥ X ¥ into ¥ x P defined by
pi(u, )= (pi(u),pi(@1)), 1=i=A Let T' denote a transition matrix on &' =
¥ x ¥ defined by the transitions

w _')phl(w)’ T ﬁ)‘(w)

where w = (4, #) € ¥ x &% T' has row sum A. Because the road colorings are
resolving and the transition matrices are irreducible we can assume that there
exist an m-tuple (i, -, i.) and an n-tuple (j,,---,j.) such that p, ---p;, ¥ =
P PP = {1}; Let a=p, - py(1). Then g, - pupi, ** pu(w)=(a,1) for
any w€F XY There exists a T'-cycle: namely (a,1)—p,(a,1)
_’"'T’ﬁi.."'ﬁil(a,1)=(a,1)- i

Let & denote the nonempty irreducible component of &' containing (a,1)and T
the transition matrix defined on & with transitions inherited from T". T also has
row sum A. In addition 5y, -+, 5, defines a resolving road coloring for T. We
define the natural projections m, 7 by 7 (u, ) = u and 7 (u, @)= @. The proof
that these mappings are finite-to-one, onto, continuous and commute with the
shifts is the same as in the previous lemmas. The proof of the one-to-one
property is also similar. Let us just mention that 7 and 7 are right resolving. So
are the maps p and p of (T) and (T) onto (T*) associated with the road colorings
as described in the previous lemma. The T*-admissible (m + n)-block b* =
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(i, bmj1, = * *, ja) is TesOlVing for both p™' and p~' since p~'b*|... = a and
p7'b*|m+n = 1. In addition p~'b* and p'b* are resolving for 7 and 7', because

W—lp—lb* 'm+n — ﬁ_—lﬁ—lb* 'm“' = (a’ 1)

ProrposiTioN. If T is irreducible and there exists a resolving road coloring then T
is aperiodic.

Proor. We can assume that p, -+ p, & ={1}. Thus

1= p ()= pop ()= = p o pu (D=1

is a cycle of length n +1 and

1= p ()= ph ()= = p = i (i (D) = 1

is a cycle of length n + 2. Hence 1 is the greatest common divisor of cycle lengths
minus one. Conversely we state the following.

Consecture. If T is aperiodic then there exists a resolving road coloring.

Many examples have been tested but a counter example for the conjecture as
well as a proof has so far failed to show up.

We shall now explain the origin of some of the above terminology. We
imagine & to be a set of cities and T to define a system of one-way roads
connecting them. Each city has A exit roads (a city having a road leading to itself
is not excluded). The highway department has A colors with which to paint the A
different roads leading from each city. The road from city i to j is colored K if
px (i) = J. If a resolving road coloring exists then the roads can be painted so that
a motorist upon calling the National Automobile Club to inquire how to get to
city 1 is not asked where he is presently at but merely told to follow a certain
finite sequence of colors. Motorists from each city will simultaneously arrive at
city 1 folowing this sequence. True, some may have passed through city 1 several
times but that is besides the point.

Perhaps working an example at this point would be helpful. Let T be given by
the following transitions:

1-2,6
2—1,4
34,5
41,3
52,3
6—>1,2



Vol. 27, 1977 EQUIVALENCE OF MARKOYV SHIFTS 57

Here A =2 and it is easy to verify that T is aperiodic. Picture this as 6 cities
connected by one-way roads

}/@

\x@

S

Let the roads
1—-2
21
3—4
41
5-2
6—1

be colored red and the others blue. Then

Red Red Blue Red
1 - 2 — 1 - 6 — 1
2 - 1 - 2 — 4 - 1
3 - 4 — 1 - 6 — 1
4 - 1 - 2 — 4 - 1
5 - 2 — 1 - 6 — 1
6 - 1 — 2 - 4 - 1
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5. A method bypassing the unsolved conjecture

Given transition matrix T with symbol set ¥ and assuming n > 1 let us denote
by ™ the set of T-admissible n-blocks and by T the transition matrix for ¥
defined by u = (U1, -, Us) > v = (v, -, 0.) if ul3 =v|™". For n =1 we set
FV=% and TY=T.

(T™) is obviously homeomorphic to (T) and the natural homeomorphism &
defined by

1‘}("'u{31‘2,"',1113_1,54[?,"')=("‘u-1,uo,u1,"‘)
satisfies the commuting relation between the shifts on (T”) and (T). If T has
row sum A then so does T™. Every road color of T gives rise to one for T™ but
T® has many more. For this reason it becomes easier with large enough n to
solve the conjecture of Section 4.

LEmMA 4. If T has row sum A and T" >0, then there exists a road coloring
{p1, -, p} of T® such that pi">p.p 1"~ S consists of a single element of F°™.

Let C be a simple cycle, that is one containing no subcycles. Relabeling if
necessary we can assume C =(1,2,---,ip,1). It will be convenient to let (C)
denote the element of (T') consisting of infinite repetitions of the cycle C with
(C)|o=1.1In T* there is a special cycle denoted C*’ which corresponds to C in
T, namely

CO=(O)s, (O, -+ (C)s™™™).

An element u € $®is said to be in C*’, and with a slight abuse of notation let us
write u € C®, if u = (C)|/** for some j. For u € $%" let I(u) be defined as the
largest I such that u|{ € C®ifu[,€ CPor I(u)=0if u|, & C®. I(u) measures
how much of the tail of u lies in C. From the hypothesis T" >0 for every a € &
there is a p(a) € ¥™ such that p(a)|; = a and p(a)|. = 1. p(a) is the “path”
from a to 1. In order to “color” T®* we give three rules for choosing p,(u) for
each u € °. The remaining p.(u), - - -, p(u) are chosen arbitrarily from the
other v for which u—wv. L. If I(u)=2n, ie., u = (C)[}"*'"' € C*" then we
define p;(u)=(C)[;27". IL If I(u) = n then either u |, is k steps away from C
and p,(u)is chosen so that p,(u)|,. is k — 1 steps away or u |,, = (C)|; and p,(u)
is chosen so that py(u)[sn =(C)|s. 1L If n<I(u)<2n and u |}y, =

P fiys1) "' then we choose py(u) so that pi(u)|zn = p(U [1ye1) fzn—turer. ON
the other hand if n <I(u)<2n and u [{fe1 # p(U |10n1) [i"'™ then pi(u) is
chosen arbitrarily. Rule I keeps elements of C in it. Rule II sends elements
not in C®” “closer” to it. Rule III continues to direct u |,, on the n-step path
from u 1wy & C to 1if u [}y is already on it. The mapping p, : ¥ — & has the
following four easily verified properties:
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1) ueC®™ > pi(u)e C®;

2) ulfiy, EC™ > pi(u)eC®,

3) ulp"€C¥ > pit(u)l €C;

4 uligCc?and ul,, €C > pi (W)€ C™.

We shall now prove pi" >(u) € C™. There are two cases. First if u |23, € C*™ we
Y

apply (2) and then (1) to get p$"*(u) € C®™, In the second case there is an i,
0=i=n-1suchthat u ;5" & C?. Therefore pi(u)|»"' & C®. Now there are
two subcases. In the first pi(u)].. € C. We apply (4) to get pi "(u) 21, € C™
and then (2) to get pi**'(u) € C®. In the second case pi(u)|.. & C. We apply
(3) to get p7*7'(u) 2« € C, then (4) to get pi"**(u) %21 € C*, and finally (2) to
get p>""H(u)E C®. In either of these subcases we can use (1) to get
pi"?(u) € C®™. At this stage all elements of pi">F*" are in C*" but they may
be out of “phase”. To get them in phase we proceed as follows. From (1) and the
definition of road coloring we have that p,p1"~*(u) & C®". Here I(p.p3">(u)) =
2n—1 with pp1"*(u)3n-1 € C®. Repeated applications of Rule IIT yields
P21 () |2n = 1 with p? " pap " (w) 2 & C®. We apply (3) and then (2) to
get p1"*p.pi"(u) € C® with p3"?p,p1"*(u) |1 = 1. There is only one element
v € C® with v |, = 1: namely, v = pi"Zpp1" () = (1,2, - -, (C) |zn-1).

6. Conclusion

The proof of the main theorem is merely a combination of the four lemmas.
The following diagram explains all.

(T)

( '1‘152")) (T(zn))

(f) (T>)

* Tz)
(T) (T (
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Addendum (Added in proof January 23, 1977)

The purpose of this addendum is to remove the restriction of aperiodicity in
the main theorem.

THeoREM. Let T\ and T, be two irreducible transition matrices of period p with
A = integer as common maximal characteristic value. Then there exists an
irreducible T; with the same period and maximal characteristic value A and
mappings 7, and i, of (Ts) into (T,) and (T:) respectively such that w, and 7, are

i) onto,

i) finite-to-one,

iii) continuous,
satisfy

V) T 03= 0,7, T203= 02,
and are

v) one-to-one after removing from (T.), (T>) and (T5) shift invariant sets
having measure zero with respect to any of the existent shift invariant ergodic
probability measures which are positive on open sets.

We shall abbreviate the last participle phase in (v) to ““having maximal entropy
measure zero” . This terminology is more than mere convenience and the reader
can consult W. Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc. 112
(1964), 55-66, for additional background material on it.

We shall now proceed with modifications needed to prove the theorem.
Corresponding lemmas will be numbered as before.

Proor ofF THEOREM. An irreducible transition matrix T has period p if and
only if it has the following property (P):

The symbol set ¥ ={1,---, N} can be partitioned into p disjoint sets
F=FUF U U, such that the transition i—j can only occur if i € %
and j € i igmoap). And furthermore T? acts on ¥, aperiodically: that is, there
exists an m such that for every k, 0=k =p -1, if i,j € % then t{™>0.

LemMa 1. Let T be an irreducible N X N transition matrix with maximal
positive characteristic value A = integer. Then there exists an N X N transition
matrix T with row sum X and a mapping w of (T) into (T) such that = is

i) onto,

ii) finite-to-one,

iil) continuous,
satisfies
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iv) 7o = o,
and is

v) a one-to-one map of (T)— N onto (T)— N where ¥ and N are shift
invariant sets of maximal entropy measure zero.
Furthermore if T has period p so does T.

Proor. The first statement has already been proved in §3. The second follows
from the fact that T inherits property (P) from T by virtue of the fact that 7 is a
one-block map satisfying (iv).

Next we let #* ={(i,j):1=i = A, 0=j = p — 1} and define the canonical row
sum A period p transition matrix T* by the transitions (i, j)—> (i', ') for all ;, i’
whenever j' = j + 1 (mod p). The symbols of ¥* can be ordered so that T* takes
the form of a Ap X Ap matrix

[ 0] (1] - (01 ]
O o n o--- 0]
T+ = -
(0] -—- [0 [
L (1] - - [0] |

where [0] is a A X A matrix of zeros and [1] a A X A matrix of ones. For arbitrary
T with row sum A and period p for which ¥=%,U---U ¥, according to
property (P) we can define a mapping p :(T)—(T*) given a road coloring
(P, ) by p( by buvry )= (€8, % - 7) where £71=(i%, /1) €S
such that j% = k if & € J, and i} is determined by p %, (&) = ... Furthermore
we say {pi, ' - -, pr} is resolving if there exists an n-tuple (p,, - - -, p;,) of maps from
{p1,*+, pr} such that p, - - - p, % consists of a single element for at least one of
the %.. Actually once this happens for one ¥, it can be arranged to happen for
all.

Lemma 2. If T is an irreducible row sum A transition matrix with period p and
has a resolving road coloring {p., - - -, p.} then the associated map p of (T) to (T*)
is

i}y onto,

il) finite-to-one,

iii) continuous,
satisfies

iv) po=o0c*p,
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and
v) maps (T)— N one-to-one onto (T*)—N* where N and N* are shift
invariant sets of maximal entropy measure zero.

PrROOF. Suppose p;, - p, S« consists of a single element, say 1. Let b* =
(i1, j1), * * *, (iny ju)) Where j;=i+k —1 (modp). Then b* is resolving for p~*
because b,., =1 for any T-admissible b = (b,,- -, b.s,) where b, € ¥ and
p,(b;) = b.;,1 =j = n. The rest of the proof is the same as in §4.

LemMa 3. If T and T are two row sum A irreducible transition matrices having
period p and resolving road colorings {p.,---,p.} and {p1," - -, p} respectively,
then there exists T also irreducible with row sum X and period p and mappings =
and 7 of (T) to (T) and (T) respectively such that m, 7 are

i) onto,

i) finite-to-one,

iii) continuous,
satisfy

iv) wé = om, o = o,
and are

V) one-to-one onto after removing from the three spaces sets of maximal
entropy measure zero.

ProOF. Suppose p,, - p, % and p,, - - p, F consist of single elements. By
irreducibility we can assume the two elements are labelled the same, say by 1.
We can also assume k = k =0 and %, and %, both contain 1. This means we
must take m=n=0 (modp) Let a=p, - p,()€EF. Then
B Pubu,Ouw)=(a,1) for w=(u i), u€%, A€ %,. We see that
{p:--pn} is resolving for T by noting that T satisfies property (P) with
F=FU---UP,_ where & = N (%« X &.). The remainder of the proof is
the same as in §4.

Lemma 4. If T is irreducible with row sum A and.period p, then there exists a
resolving road coloring {p., -, p.} of T where n = mp with m defined by

property (P).

Proor. Let C be a simple cycle as in §5. We can assume the symbols of & are
labelled so that C = (1,2,---,p,p +1,--+,i5,1) and C | € Pi_1moap) Where & is
partitioned by ¥ = %, U - U %,_, according to property (P). Because n = mp
we can define for each a € #,0=k =p —1,an element p(a) € ™ such that
p(a)|, = a and p(a)l|. = k + 1. The rules for coloring T®" are the same as in §5.
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We get pi"?ppi" P FEVC C® and p" Pppi" (W)= k+1 +(Tn—5+1)
(modp) whenever u |, € ¥, for u € ™. For each k there is only one v € C®”
satisfying v |, = k +7n —5 (modp). Thus ¥%” can be partitioned according to
property (P) by ¥V =F¢U - UFC where ¢V ={u€ F*:ul, € %}

and pi"p.p 1" FL™ consists of a single element for every k.
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